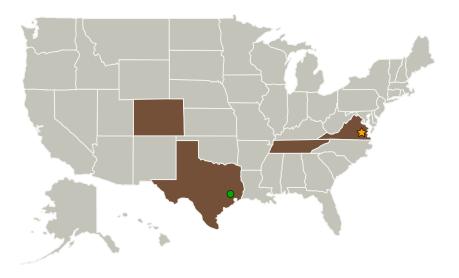
Thick GCR Shield

Completed Technology Project (2014 - 2018)


Project Introduction

Insufficient data exist to validate thick shield space radiation exposure predictions. This task seeks to validate the shielding efficiency of spacecraft materials and verify an optimum Galactic Cosmic Ray (GCR) shield thickness needed for minimal mass vehicle design.

Anticipated Benefits

Identification of optimal GCR shield thicknesses and quantification of the uncertainty associated with shielding efficiency for thick shields will enable minimal mass vehicle design and reduce uncertainty in astronaut risk predictions.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead	NASA	Hampton,
	Organization	Center	Virginia
Johnson Space	Supporting	NASA	Houston,
Center(JSC)	Organization	Center	Texas

Thick GCR Shield

Table of Contents

Project Introduction		
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Transitions	2	
Project Management	2	
Technology Maturity (TRL)	2	
Target Destinations		
Project Website:		

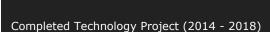
Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)


Responsible Program:

Game Changing Development

Game Changing Development

Thick GCR Shield

Co-Funding Partners	Туре	Location
Exploration Capabilities	NASA Program	
Human Spaceflight Capabilities	NASA Program	
Southwest Research Institute - San Antonio(SWRI)	Academia	San Antonio, Texas
Space Life and Physical Sciences Research and Applications Division(SLPSRA)	NASA Program	
The University of Tennessee-Knoxville(UT-K)	Academia	Knoxville, Tennessee

Primary U.S. Work Locations		
Colorado	Tennessee	
Texas	Virginia	

Project Transitions

0

October 2014: Project Start

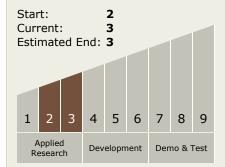
September 2018: Closed out

Closeout Summary: The Advanced Radiation Protection (ARP) Thick Galactic C osmic Ray (GCR) Shielding project was designed to reduce astronaut radiation e xposure during long duration travel. Space vehicles will need additional mass to shield astronauts from space radiation. Optimizing the amount of mass used to the degree of radiation protection provided requires a better understanding of the shielding capabilities of current material systems. The project made significant advancements in the state of the art database development needed to underpin models for particle transport and astronaut radiation dose exposure. Experiment al measurements from guided experiments established data that were used as transport code benchmarks to anchor software simulation and modeling predictions. These efforts validated predictions of optimal shield thicknesses and shield efficiencies with bounded uncertainties. Project results have been transferred to the Human Research Program (HRP) and Advanced Exploration Systems (AES) Architecture Design Teams.

Project Management

Program Director:

Mary J Werkheiser


Program Manager:

Gary F Meyering

Principal Investigator:

Kevin M Somervill

Technology Maturity (TRL)

Target Destinations

The Moon, Mars, Others Inside the Solar System

Game Changing Development

Thick GCR Shield

Completed Technology Project (2014 - 2018)

Project Website:

https://www.nasa.gov/directorates/spacetech/game_changing_development/index.html

